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Road traffic congestion

*Congestion in the US in 2009 (Urban Mobility Report, 2010)
5115 billion in wasted time and fuel
4.8 billion hours of delay
*Average traveler needs 25% more time than speed limit travel-time

*Federal Highway Admistration trend
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Congestion mitigation strategies

*Capacity increase
*Roadway expansion
*Variable speed limits
*Incident management

Throughput
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Congestion mitigation strategies

Throughput

*Mode shift
*High-occupancy vehicle lanes

*Public transportation saved
in the US in 2009)

*Temporal shift
*Telecommuting

*Ramp metering: Minnesota(2000),
22% reduction in travel-time

*Dynamic toll system: Stockholm
reduced traffic by , wasted time
by 25%)

*Spatial shift (routing directions)

3600

2000

0’
0

100

225

Vehicles on the road




Modeling, estimation, and control

*Traffic modeling
*Microscopic (vehicular) or macroscopic (elements of flow) perspective
. and statistical assumptions

*Estimation methods
*Analytical only for specific models and statistics
*Most computationally-intensive task: tractability for real-time analysis
*Require assumptions on origin and nature of

. algorithms
*Traveler information (congestion maps, routing directions)
*Traffic assignment (ramp metering, road pricing, variable speed limits)



Modeling, estimation, and control




Classical sensing technologies

magnetometer



Smartphone ubiquity: from smart roads to smart

U.S. Smartphone Penetration & Projections

*Spread of mobile and smart phones
*Worldwide mobile phones market increased b -

3

20% in Q1 of 2011 ;

*Close to in the US . RS
*Dynamic traffic control T

*Accurate information (<5 minutes o e e

delay)

*High-frequency update (>1 per minute) [495E 1278 Eand... |-

*Dynamic routing (Google: March 2011)

. (appropriate for stochastic
systems)
*Accounts for more complex criteria (reliability) N
*Personalized route recommendations & ( \“?ﬁ
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Mobile Millennium: a traffic information system

Consume
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Ubiquitous sensing

L
loop detector stations

!

Mobile Millennium, GPS point
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*Loop detectors

*Personal GPS
*Count and occupancy
*Localized in space

*Point speeds

*Distributed across the road network



Mobile Century experiment: proof of concept

*\Vobile Century experiment —
*February 8th, 2008

*10 miles, 100 cars, 100 GPS-enabled
smartphones

*Accident and morning congestion

*Proof of concept of added value of
GPS data for traffic estimation

*Collected data available at
traffic.berkeley.edu

Alvarado Niles Rd.
(Base Station)

Alvarado Bivd.

PM
Routes

165 UC Berkeley
graduate student drivers
Herrera, Work, Ban, Herring, Jacobson, Bayen, TR-C, 2010
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Mobile Century experiment: data collection

GPS velocity (local phone logs) PeMS inductive loops
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Mobile Century experiment: video data collection
Video data:

— Vehicles counts

— Travel time validation
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Mobile Century experiment: validation

*\Mobile Century experiment
*February 8th, 2008
*10 miles, 100 cars, 100 GPS-enabled smartphones

*Proof of concept of added value of GPS data for
traffic estimation =
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Temporal sampling
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Processing temporally sampled data

eData characteristics

eLarge sampling interval (power and
privacy constraints)

*Noisy measurements (in particular
in urban areas)

*Point data (no speed) must be
converted to travel-times

*HMM map-matching algorithm

*Reduces sensitivity to
measurements errors

*Sensitive to very small speeds

[Hunter, Bayen, TITS, 2011]

VA

L




Mobile Millennium system: Yellow Cab data

Mobile Millennium

|
)/";ifi\ CALIF o N A ““ ‘
< PM H http:/itraffic.berkeley.edu N “--||

Example of trajectory reconstruction failure
True trajectory
Naive reconstruction
® Raw GPS point

[Hunter, Bayen, TITS, 2011]
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Spatial sampling with Virtual Trip Lines (VTL)
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*Virtual trip lines
*Preloaded virtual geographic markers

*Probabilistic collection of speed of vechicles
vehicles crossing

*Anonymized measurements sent to estimation
algorithm



Spatial sampling with Virtual Trip Lines (VTL)

Virtual Trip Line (VTL): virtual trigger to send measurements
step 1: download VTLs to cell phone (automatic)
step 2: check: does my GPS trajectory intersect a VTL?
VTL

if yes, send VTL measurement update
VTL
database
updates

requess database

[VTL ID=003, time=11:16:42,
sddedP59RwH]Me=11:16:01, speed=52mph]

[VTL_ID=001"g=1T" speed=54mph]

receive VTLg

[[Hoh, Gruteser, Herring, Ban, Work, Herrera, Bayen, Annavaram, Jacobson, Mobisys 2008
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First order scalar conservation law models

*Traffic state: density p(¢, x)of vehicles at time ¢ and location &

*Dynamics: Scalar one dimensional conservation law, transport equation

dp | aQ(P) — ()
ot ox

*Empirical flux function: the fundamental diagram

Newell-Daganzo Greenshields Kerner, Papageorgiou,Li

Qp) [, Q(p) Q(p)

R/2 ~p

[Lighthill, Whitham, 1955], [Richards, 1956], [Greenshields, 1935]



Network conservation law model for velocity

* road network as directed graph:
-> edges
® vertices

* vertex linear program

solves for link boundary
conditions

mass conserving

guarantees uniqueness of
solution on networks

!
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Vertex

optimization problem
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[Work, Blandin, Tossavainen, Piccoli, Bayen, AMRX, 2010]



Flow-based statistical model of urban traffic

*Macroscopic model at traffic lights
*Queue propagation implies specific spatial distribution of vehicles

*Estimated travel-time distributions have to be consistent with queue
phenomena

X C /////////// /,
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[Hofleitner, Herring, Bayen, TR-B, 2011]




Machine learning model of travel-time

1 - Raw data 2 - Map matching 3 - Path discovery 4 - Path inference
1] { |- ik [ "
o - ol
P ¢ ® 0 ) {"' g
5 - Filtering 6 - Traffic learning 7 - Display
[ I

W

]
(

[Hunter, Bayen, TITS, 20171]
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Properties of urban travel times

*Non gaussian distributions

Link independence do not hold

Example of travel times on a complete

*Required distributions link ,
. 20— (San Francisco, Van Ness Ave, 1 block) —
*Heavy tailed Recorded from 1s GPS sampling

*Mixture model

100}

Number of observations

o
o

[Hunter, Bayen, TITS, 2011] Total link travel times (seconds)



Properties of traffic flow

*Nonlinearities of traffic flow
*Globally: development of congestion phases
*Locally: instabilities leading to stop-and-go waves

Nonlinearities
*Induce discontinuities in the solution of the PDE
*Have to be accounted for as mixture distributions

*Nondifferentiability
*Caused by the existence of stationary shockwaves
*Break assumptions of Taylor series approximations

[Blandin, Couque, Bayen, Work, TR-B, 2011]



The ensemble Kalman filter

Initialization: Draw K ensemble realizations vo (k) with &k € {1,---, K}
from a process with a mean speed 7. and covariance P,

Forecast: Update each of the K ensemble members according to the
discrete velocity model. Then update the ensemble mean and

covariance according to:
v (k) = Mg~ (B)] + 0" (k)

1 K
vy = e Z vy (k)
k=1
1 K .
Pgns,f — K —1 Z (’}l(k) — 1_’?) (U}l(k) — l_);cl)

k=1

Analysis: Obtain measurements, compute the Kalman gain, and update
the network forecast:

1

n n n\1' npn n\1' n\
Gens — Pens,f (H ) (H Pens,f (H ) + R )

Vo (k) = 07 (k) + Glog (Uiheas — H'0F () + X" (k)
[Work, Blandin, Tossavainen, Piccoli, Bayen, AMRX, 2010]
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Behavioral fluid mechanics
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Macroscopic models of set-valued driving behavior

* Extension of classical .
. Flow A density
conservation law framework

300} measurement _
*Modeling choice of different oy velocity
. oy Bk ek ¥
speeds for different densities £ measurement

*Integration of joint velocity
and density measurements

-

2000

€ 1 1
0 100 225

p p

[Blandin, Work, Goatin, Piccoli, Bayen, SIAP, 2011]



Macroscopic models of set-valued driving behavior

*Definition of traffic state as

* p infree-flow phase

*(p, q) in congestion phase
*Definition of the standard speed function

Vv in free-flow
vi(p) in congestion

where v?(-) is smooth with positive values.
*Definition of speed as a perturbation around the standard speed in

congestion .
. {V in free-flow

ve(p,q) = vi(p)(1+ q) in congestion

* Definition of

r(?tp + 0.(pv) =0 in free-flow
) = ()

Y J 9P+ O ('0 z ) ' in congestion

| 0q + 0:(qv) =0

[Blandin, Work, Goatin, Piccoli, Bayen, SIAP, 2011]
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Travel-time reliability

Red route
Blue route

\

T / T T

i 1)2(f) : f_]A =g f_g. but )
Probability 1] () dt > l; pol(t) dt

p(t)

i
t1 ta 1

~

Travel-time

[Loui, 1983]



A stochastic routing formulation: on-time arrival

*Definition: Given an origin, a destination, a time budget, maximize the
probability of arriving at the destination within budget.

p2(1)

t1 < t2, but
~x x
! p1(t) dt > ’ pa(t) dt
T T

p(t)

*Challenges:
*Proof of theoretical convergence
*Tractable solution algorithm

[Loui, 1983]



Problem statement

‘Let G(V, F)) be a directed graph which represents the road network.

*With each edgee;; € E is associated a continuous link travel time probability
density function p;; (-).

*Stochastic on-time arrival (SOTA) problem: given a couple origin-destination s — ¢
and a time budget 7', find the optimal routing policy

wi(T) 1= maX/Osz'j(%U) u;i (T —w) dw

J
VieV,i#t (i,j) € B,0<T<T
w(r)=1 0<7<T

*Challenges

*Optimal policy may contain loop, no bound on finite number of iterations
(value iteration, Picard method of successive approximations)

Numerical tractability for real-time applications

[Fan, Kalaba, Moore, 2005]



Algorithm

*Note 0 the minimal link travel-time
*Bound on number of iterations in
continuous setting L = [T'/¢]

*The convolution product is computed
*Using the fast fourier transform
*By increments of size ¢

*Complexity O (m ng Z_i log ’“A—‘z)

compared to brute force method:
T/A
O (m 2" k)

Step 0. Initialization.
u(f)=0, YieN, i#s, t€(0,T)
uwt)=1, Yte(0,T)

Step 1. Update
Fork=1,2,...,L
™ = ko
uf(t) = uf‘l(t)
VieN, i#s, te(0,7°-6]
uf.‘(t) = max fot pij(w) ulj‘._l(t —w)dw
VieN, i+s, (i,j)eA, te(th-01"

*Improvements relying on local values of minimal link travel-time
*Definition of policy update invariant 7, < min;(7; + d;;) and

optimal order

[Samaranayake, Blandin, Bayen, ISTTT, 2011]



Probability of arriving on time

*San Francisco arterial network

Long route (SOTA policy vs LET path)

o O O
N (o)) o)
T T T

Probability of arriving on time
o
N

10 15 20 25 30 35 40
Travel budget (minutes)

Short route (SOTA policy vs LET path)

Probability of arriving on time

1t

©
o

o
o

o
»

©
N

1 ]

10 15 20 25 30
Travel budget (minutes)

*Dashed: least-expected travel time path
*Solid: stochastic on-time arrival policy

[Samaranayake, Blandin, Bayen, ISTTT, 2011]



Runtime improvement

Computation time (seconds)

900r
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300F

San Francisco arterial network

—brute force
—-—-optimal FFT
optimal FFT with pruning
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____
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1400r
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—brute force

——-optimal FFT
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-
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..............................

.........

30
Budget at the origin (minutes)

*The algorithm is coded in Java and executed on a Windows 7 PC with a
2.67Ghz Dual Core Intel Itanium processor and 4GB of RAM

[Samaranayake, Blandin, Bayen, ISTTT, 2011]



SOTA iPhone app

*iPhone application DriveTracker for San Francisco
commuters

*Real-time traffic conditions from Bayesian
network model of individual link travel-times

il T-Mobile E 23:57 =4

Start Embarcadero & Broadw...

*2626 links, mean and variance of link travel-time Ml = |/ van ness & caifornia ave
available for 40 time periods during the day (up to om33secleft .,

On-time arrival: 83% GO

15-minute resolution)

*Communication scheme
*Optimal policy is sent to = o deReal(
: PR e BN

District

the phone at origin AT N “».\
. e m—— P ek i e
*Policy updates pushed - “w

1l A W Eeag 3
to phone if traffic S RN
. . A"’p:‘:;’ _m:, ‘?—‘i‘KGW v ;Wi : ‘v’ 7e s ’ /‘ :— %
conditions change B e IR
: £ /{ == i = B s /
significantly = Wil iR O
e 3 s sreaag 7,559 B
£t : v X 5 K AT Park
o e S KA
:/uw "~°"unn' P Errich “r\ '
| [ i 'il‘r
ey LR T

[Borokhov, Blandin, Samaranayake, Goldschmidt, Bayen, ITSC, 2011]



SOTA iPhone app features

*Power efficiency
*Policy is computed only once

*Push-based recomputation Unerlrouie s aen
*Sampling scheme depends on P & renas
dyn amics Push  Routing requests Web / SOTA
Server server Travel time cluster
Rc\*alc!qln:ion distributions
.Safety alert Routing policies
*Relative aural turn-by-turn / Historscal
directions e distrivutions
. . . . distnbations
*Minimal visual/cognitive mode] —
d iSt ra Cti on o distributions
clwent
( DS traces Filtering & data aggregation
s — 7 77 1
Cabspotting | NAVTLEQ PeMS
e VA 1
MM drivers TeleNav FasTrak

Mobile Millennium (MM}

[Borokhov, Blandin, Samaranayake, Goldschmidt, Bayen, ITSC, 2011]
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Network-wide optimal control

*All current control strategies are semi-local or microscopic
*Ramp metering
*Coordinated signal (corridor)
*Route guidance

*Significant progress recently on traffic estimation
*Truly distributed knowledge of traffic phenomena
*Truly real-time estimation with high resolution
*True knowledge of stochastic nature of traffic

*Optimal control of network traffic

*Smart phones allow new types of controls: at
intersections not limited to {0,1}

*Development of educated multimodality

*Better understanding of and to
harness increased computational capabilities



Mobile Millennium project

http://traffic.berkeley.edu
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Some candidate recursive estimation methods

particle filtering
Monte Carlo method
fully nonlinear, non-differentiable model and observation equation

extended Kalman filtering (not applicable)
requires linearized model (and observation) equation
storage of large covariance matrices

ensemble Kalman filtering
Monte Carlo model evolution, linear update equation

[Anderson and Moore, Optimal Filtering, 1979; Kaipio and Somersalo, Statistical and Computational Inverse
Problems 2004; Evensen, Data Assimilation: The Ensemble Kalman Filter, 2006]



Network traffic estimation in Mobile Millennium

« directed graph representation

— generated from Navteq map database
(automated)

— deployable nationwide N

* Northern California network e N
— 4164 edges, state dimension: >15,000
— 3639 vertices (custom LP solver)

o)

« production code Real-time highway traffic "~
Visualizer o

— streaming data to participating users’ =
cell phones for 18+ months

* real-time on my 4 year old

[Work, Blandin, Tossavainen, Piccoli, Bayen, 2009]



Bayesian network for traffic estimation and forecast

Model assumptions:
*Jointly Gaussian

Historical data *Independent contemporary
—> Structure and states given their parents

parameters learning <

maximal score (e.g. BIC score ~ MLE)

l Graph structure, parameters with
on historical data

Current data

—> Forecast

assumptions, current data, graph

l Posterior forecast given model
structure, parameters



Today
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Motivation

*Highway traffic phenomena can be measured via a wide
variety of sensors

*Fixed sensors
*Reporting macroscopic quantities (count, occupancy)
*Reporting microscopic quantities (travel time, speed)

*Floating sensors
*Probe vehicles from fleets (reporting traces)
Commuters using smart phone applications (speed)

*\obile Millennium: testbed for novel traffic algorithms
*60 million data points collected daily
*Fusion platform providing real-time traffic in Bay Area




Riemann problem: building block for conservation laws &

* Knowledge of dynamics and left and right constant initial condition

(Oip+ 0,Q(p) =0

{ o if <0
p(0,z) = .
pr if x>0

\

* Traffic state p propagates at characteristic speed Q’(p)
* Two cases:

Q' (p) < Q'(pr) Q' (p1) > Q'(pr)

Al Al

Pl Pr Pl Pr



Riemann problem: building block for conservation laws &

* Knowledge of dynamics and left and right constant initial condition

(Op + 9:Q(p) =0
< {,01 if <0

0,2) =
POD=0 0 i e s

* Traffic state p propagates at characteristic speed Q’(p)
* Two cases:

Q' (p) < Q'(pr) Q' (p1) > Q'(pr)

A /\t

t
) ///
Pr Pl

Pl Pr




Riemann problem: building block for conservation laws &

* Knowledge of dynamics and left and right constant initial condition

(at,() + axQ(p) =0

if 0
R N
\ pr if x>0

- Traffic state p propagates at characteristic speed Q’(p)

* Two cases:

Pl

Q'(p1) < Q(pr)

Al

Q' (p) > Q'(pr)

Solution non unique

Al

Solution over-defined

Pi

Pr

(discontinuous)
Pr
> T // > T
Pr Pl



Riemann problem: building block for conservation laws &

* Knowledge of dynamics and left and right constant initial condition

(Ohp+ 0,Q(p) = 0
{ o if <0
p(0,z) = { .
pr if x>0

\
* Traffic state p propagates at characteristic speed Q’(p)
* Two cases:

Q' (p) < Q' (pr) Q' (p1) > Q' (pr)
Lax entropy condition Rankine-Hugoniot

Al A 1 | condition:speed of
propagation of
discontinuities

pi Pr
pl/
> T / s
Pl Pr Pl

pr




Lyapunov stability analysis: derivations

* Derivative of the Lyapunov function:

W) = 3 @ (ta(t) G + [ 0,5 da
O @ (i (1) df';;;l — a2 (@) G |+ 5 NPT o 0,82 do
43 [ (e (1) S 1 [ Oy da]

Whereu (t, x) = limp o u(t,z + h)

e Using the fact that v is a solution of Burgers equation, and Rankine-Hugoniot
relation:

(1) = Jud(t,0) = Su(t,0)u” — Jud(£,0) + Sl () w + 5 LN (A



Lyapunov stability analysis: derivations

* Derivative of the Lyapunov function:
W) = 3 @ (ta(t) G + [ 0,5 da

~ CB@ 1 a’;z ZBZ 1 t ~
+ X0 %<t,xi+l<t>>dd: — a3 (twa(8) G |+ 3 S  [20 0 de
~ dZUNt
+ 4 [F@ (L () S+ J7, (o 072 da]

Whereu+ (t,z) = limy_o u(t,x £+ h)

e Using the fact that v is a solution of Burgers equation, and Rankine-Hugoniot
relation:

(1) =Lud(t,a) — $uP(t, @) u” — L (1,0) + S (t,b) w1 SN (Aw)’

_— e

boundary term

internal term

where A 4 = uy (t,xi(t)) — u_(t, x;(t))



Lyapunov stability analysis: remarks

(1) = (1, 0) -

bu b2t a)u — b (,6) + Su2(0)w ]y SN0 (An)?

_— e

boundary term

internal term

where Aju = uy (t,x;(t)) — u_(t,z;(t)) and ux (¢, ) = limp o u(t,x £ h)
* According to Lax entropy condition, the internal term is stable

* The Lyapunov function is decreasing if f(u(t,a)) — f(u(t,b)) <0
where f: u — u’/3 — u*u?/2

* The value taken by the solution at the boundary may differ from the value
imposed at the boundary



Numerical illustration

Lyapunov function candidate value
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Illustration of loops in SOTA algorithm

*Time budget of 4

Different paths with non-zero probability of arriving on time at d when

starting from a

P(tt,, = 1) = 0.9
P(ttab = 2) = 0.1

P(tt,y=1) = 0.1
P(tt,4=5)=0.9

Path Travel-time | Probability
{(a,b), (b, d)} 4 0.9
i(a,d)} 1 0.1
{(a, b), (b, a), (a,d)} 4 0.01




Optimal order for the SOTA algorithm

(& OO

Iter. || a b C d Iter. || d C b a
1 1 3 8 18 1 10 | 5 2 11
2 19 | 21 | 26 | 36 2 15| 7 13 | 16
3 37 | 39 | 44 | 54 3 17 | 12 | 18 | 18
4 55 | 57 | 62| 72 4 22 23 | 20 | 23

Table 3: computing the u; values in Table 4: computing the u; value in
the order (a, b, ¢, d). the order (d, ¢, b, a).



Problem statement

*Consider the Burgers partial differential equation:
oyu + %8$u2 =0
*Given

*an initial condition ug(+)
*a stationary state u*(-)

* Can one define left and right boundary conditions w,(-), up(-)such that the
solution (-, -) of the initial-boundary value problem:

/ *

f&;u + %8$u2 =0 i =

9 ’LL(O,$) — ’LLO(ZU)

\U(CL, t) — Uq (t)7 u<b7 t) — ub(t) w,? up?

is stable at u*() ?

v



Scalar conservation laws: boundary control space

ae t (u(t,a) = ug(t) xor
S u(t,a) < 0and uy(t) < 0and u(t,a) # uq(t) xor
AN | 2 g
\u(t,a) <0 and u,(t) > 0 and 5u*(t,a) > suz(t)
* A, B, C: the control does not have pug (1)
any action. i
De :
At :
| Fo
Ny "
i u(t, a)
> )
Ua(t) u(t,a)
Scenario C < Ne.
* Example: imposing free-flow
%tate from upstream with higher
ow.

[Blandin, Litrico, Bayen, CDC, 2010] Upstream boundary



Scalar conservation laws: boundary control space

(u(t,a) = ug(t) xor

u(t,a) < 0and u,(t) < 0 and u(t,a) # uq(t) xor

RARRAS (t,a) (t) 1( 2 ) (1) 2
\u(t,a) <0 and u,(t) > 0 and 5u*(t,a) > suz(t)

* D, E, F: the trace of the solution pug (1)

a.e.t

_/\\

takes the value of the control ,
De :
Al :
| Fo
L F
AN RN uft, a)
> )
Ua (1) u(t, a)
Scenario D . We.
* Example: imposing free-flow
state from upstream with lower
flow.

[Blandin, Litrico, Bayen, CDC, 2010] Upstream boundary



Scalar conservation laws: boundary control space

a.e.t

_/\\

ANNNNNY

* G: the trace of the solution
changes, but does not take the
control value.

w()  ult,a)

Scenario G

* Example: downstream end of a
queue.

[Blandin, Litrico, Bayen, CDC, 2010]

(u(t,a) = ug(t) xor
u(t,a) < 0and u,(t) < 0and u(t,a) # ug(t)
L u(t,a) < 0and uq(t) > 0and 5 u?(t,a) > ul(t)

XOor

?ua(t)
De
Be
L P
WYY u(t, a)
< .G

Upstream boundary



Scalar conservation laws: boundary control space

Mg (t)

Do | Ve
* Different regions of the control B
space correspond to different types of S oF
controls, shockwave or rarefaction. u(t, a)
< oG
u(t,a) <0 u(t,a) >0 Upstream boundary
uq(t) > —u(t,a) | uq(t) > u(t,a): Shock
uq(t) > 0| Shock uq(t) = u(t,a): No wave
uq (t) < u(t,a): Rarefaction
uq (t) = u(t,a) uq (t) € 0
Ua(t) <O No wave Rarefaction with vanishing
boundary trace

[Blandin, Litrico, Bayen, CDC, 2010]



Lyapunov stability analysis

* Notations:

* u(-,-) the solution to the initial-boundary value problem associated with
the Burgers equation and the initial condition uo(-g and the left and right
boundary conditions u, (-), us(+)

* u* the state at which we study the stability
U =u—u"

* Assumption:

* u is piecewise C'! with a finite number of components
t A

Ti(t)  wa(t) w3t — .
[Blandin, Litrico, Baygn, CDC, 2(()1)0] 2(t) @5 (t) N (t) b



Lyapunov stability analysis: differentiability

 Lyapunov function candidate
V(t) = [P a3(t,x)de

* Analysis
1. Lyapunov candidate is well defined and differentiable
2. Computation of derivative
3. Leverage PDE solution properties to assess stabilizability

* The Lyapunov function can be re written as:
V(t) = 2fx1 ® & 2(t x)dw—l— ZN(t) 1f ’L+1(t)~ (t,z) de+3 f

where:

o 2(t, x) dx

* x;(-) satisfies the Rankine-Hugoniot relation:

Wilt) — 1 (uy (b, 24(t)) +u_(t, 2:(1)))

* 4(t, ) is continuously differentlable on (x;(t), x;41(1))

[Blandin, Litrico, Bayen, CDC, 2010]



Controller design: methodology

* Lyapunov derivative:

W (1) = Sud(ta) — JuP(t.a) u” — 3ol (1,0) + JuP (6. 0) ' + & LY (M)’

* With
e fru—u?/3—uru?/2

e (C the control space

e Define the controller as the solution of:

Uq(t) = arg min U R
o) =28 ey T fa)

up(t) = arg max u
olt) =arg, | gmax o FW) /

[Blandin, Litrico, Bayen, CDC, 2010]



Controller design: stabilizability result

Theorem: Forug € BV (a,b), if the weak entropy solution u(-, -) to the initial-
boundary value problem can be written as a finite sum of continuously
differentiable functions, then, under the boundary control:

rIfu*<0: {u(t,a) if u(t,a) <0
- 0 if u(t,a) >0
g (1) = 4 (u* if u(t,a) > 0 OR|
Fus >0 4 u(t,a) < 0 AND u(t,a) > —u* AND f(u*) < f(u(t,a)) |
| u(t,a) ifu(t,a) <0AND]|
\ \ u(t,a) < —u* OR(u(t,a) > —u* AND f(u*) > f(u(t,a))) |
fIfu* e Ju(t,b) if u(t,b) >0
- 10 if u(t,b) <0
() = < (u* if u(t,b) <0 OR|
IFu <0 1 u(t,b) > 0 AND u(t,b) < —u* AND f(u*) > f(u(t,b)) ]
) u(t,b) ifu(t,b) >0AND]|
\ \ u(t,b) > —u* OR(u(t,b) < —u* AND f(u*) < f(u(t,0)) ) |

the system is stable at «*

[Blandin, Litrico, Bayen, CDC, 2010]



